"' EARLY DRAFT!!!

The
Penguin’s Guide to Daemonland

AnIntroduction to FreeBSD for Linux Users

2nd January 2021

Contents

Legal

Contents

ChapterOverview
TypesofReaders/HowtoRead

Preface

BB WN =

AboutThisBook
Audience
WhyEvenBother?

FreeBSDforLinuxUsers

FreeBSD Quickstart

Popular Penguin Pitfalls!

(Some) Important Differences to be Aware of
Your FreeBSD Toy VM

Administration Basics for the Impatient

Identifying “Linuxisms” and Living Without them

Managing FreeBSD

Installation

Disk Partitioning and Filesystems

13
13
14
15
17

23

27

29

31

35

37

Penguin’s Guide to Daemonland

8 System Boot & Service Management

9 Users and Permissions

10 Networking

11 Updating the OS

12 Timekeeping

13 Package Management

14 Logging

15 Firewalling

16 System Mail

17 Foreign Filesystems & FUSE

(Slightly) Advanced Topics

18 Breaking and Repairing the System
19 Using ZFS

20 Tuning FreeBSD

21 Secure Levels

22 Updating from Source

23 Using Ports

24 Jails

25 Bhyve

26 mfsBSD

27 Linux Emulation

page3/157

39

41

43

45

47

49

51

53

55

57

61

63

65

67

69

71

73

75

77

79

2nd January 2021

page4/157 Penguin’s Guide to Daemonland

IV FreeBSD by Example

28 Rolling Customized Packages

29 NFS Server

30 ZFS Replication

31 Simple Web Stack

32 DNS Server with BIND

33 VPN with OpenVPN

34 Jailing Web, DB, BIND and OpenVPN
35 Managing TLS Certificates with LE

36 Mailserver with Postfix

37 Doing Backups with Bareos

38 Monitoring with NRPE & Icinga

39 PXE Booting Multiple Operating Systems

40 Configuration Management and Automation
with SaltStack

V. FreeBSD Workstation & Laptop

41 Graphical FreeBSD with X11

42 Window Managers

43 Desktop Environments

44 Display Managers

45 Making Your Desktop More Comfortable

2nd January 2021

83

85

87

89

91

93

95

97

99

101

103

105

107

111

113

115

117

119

Penguin’s Guide to Daemonland page5/157

VI Background Information

46 A (very) Brief History of Unix 123
46.1 MainframesandMultics L. 124
46.2 AncientUnix 125
46.3 Law,Money-andUsers 127
46.4 Original BSD: The Berkeley Software Distribution 129
46.5 Commercial Unixand StandardizationEfforts 130
46.6 The“UnixWars” 131
46.7 BSDQutsideUCB 132
46.8 GNU,MINIXandLinux 134
46.9 Open Sourcevs. Closed Source Unix-likes 136

47 Open Source OS Family Matters 139
47.1 Whatare UNIX, Unix, *nixand Unix-likes? 141
47.2 Major Differences Between Linuxand*BSD 141

4721 Complete OSvs. Distribution 141
4722 Updating 144
47.2.3 DocumentationandManpages 145
4724 Licensing 146
473 FreeBSD and the BSD FamilyasaWhole 148
474 Closerelatives:OtherBSDs 149
4741 0penBSD 149
4742 NetBSD 152
4743 DragonFlyBSD 152
47.5 Distant Relatives: Other Unix-likes 152
4751 OpenSolaris/illumos 152
4752 Minix 152
4753 Linux. 152
47.6 FreeBSD-derived Systems(general) 152
476.1 HardenedBSD 152
4762 MidnightBSD L 152
4763 mfsBSD 152

2nd January 2021

page6/157 Penguin’s Guide to Daemonland

47.7 FreeBSD-derived Systems (desktop-oriented) 152
4771 GhostBSD 152

4772 NomadBSD 152

4773 helloSystem 152

47.7.4 (Some)Historic Derivatives 152

48 FreeBSD Culture and Community 153
48.1 AnOverview of the FreeBSDProject 153
48.1.1 ArchitecturesandTiers 153

48.1.2 FreeBSDBranchesandSupport 153

48.1.3 SystemComponents. 153

4814 Themascot:Beastie 153

48.2 ValuesofFreeBSD 153
4821 CodeofConduct 153

48.2.2 Permissivelicenses 153

48.2.3 Cathedral,notBazaar! 153

48.3 ProjectStructureo 153
4831 Governance 153

48.3.2 TheFoundation’sRole 153

484 TheCommunity 153
48.5 Known Deficiencies - where FreeBSD Comesup Short 153
Afterword 155
Appendix 157
Literature 157
Listof Contributors 157
AbouttheAuthor 157

2nd January 2021

Legal

Placeholder for legal

Contents

Chapter Overview

This book is divided into six parts (I to VI). They are generally meant to be read in or-
der except for part VI which contains optional background information. You are of
course freetoskip around but might misssome thingsifyoustartwith later chapters.

Part |

Part lisnamed “FreeBSD Quickstart” and consists of five chapters providing exactly
that. It’simportant for people who are making their first contact with FreeBSD. This
part starts with the Pitfalls chapter, meant to highlight some important differences
between a Linuxand a FreeBSD environment.

Chaptertwo, Differences, explainssomeimportant concepts and deepensyour un-
derstanding of what you read in the chapter before. Pay attention to this if you're
new to FreeBSD - it could save you quite a bit of confusion later!

The next one is the “Toy VM” chapter guiding you to get quick access to a FreeBSD
Virtual Machine. This is great for people who want to dive right in instead of read-
ing about system installation first. That chapter is completely optional of course. If
you have access to a test machine that runs FreeBSD or if you decide to install a sys-
tem yourself, that’s fine, too. In the latter case you may want read the installation
chapter from the next part instead. Which ever way you choose: It makes a lot of
sense to have access to a FreeBSD system for chapter four and later. While just read-
ing everything may do the trick for a few special people, it won't stick for most of us
if we never actually did it ourselves.

Chapter four gives you the Administration Basics - this is the chapter you would
want to read if you've got a job interview tomorrow and you know that it’ll involve
some FreeBSD! It will introduce you to doing some of the most important adminis-
tration tasks like basic package and service management.

page10/157 Penguin’s Guide to Daemonland

Finally chapter five explains what so-called “Linuxisms” are and how to overcome
common problemswhich they pose.

Placeholder for PartsllitoV

Part VI

Allofthechaptersinthispartareoptionalasyou candefinitely use FreeBSD without
knowing a lot of background information. However it’s there for a good reason: The
knowledge presented here can be anything from interesting to valuable depending
onwhatyour relationship and use case for FreeBSD is.

This is the History chapter that covers what computing was like at the time when
Unixwas born, why Unix was made in the first place and what downright incredible
things happened with it. It can be useful for people who have always wondered why
the things we have today are the way they are (and not totally different).

The next chapter, Family Matters, goes over what Unix-likes are, how FreeBSD’s re-
lation to other such Unix-likes are and what the other BSDs are like. If you want to
know more of the broader Unix family in general or the BSD family in particular, this
chapter should help you pick which other operating systems might be for you to ex-
plore, too.

Finally thereis this book’s last chapter, Culture and Community. It covers how the
FreeBSD project is organized and how the community works. If you'd like to get in-
volved with FreeBSD, this should provide you with some information to make things
aseasy as possible for you.

Types of Readers / How to Read

Ingenerallamtaking three groups of readersinto account, giving some suggestions
on how to read this book:

1. Peoplewhowanttogetuptospeedwith FreeBSD gentlybutasquickaspossible
and havenotime orinterestin looking left and right

2nd January 2021

Penguin’s Guide to Daemonland page11/157

2. People who prefer to take their time with the matter and enjoy additional in-
formation that helps to understand the whole topic quite a bit better

3. Peoplewhohaveused FreeBSDagesagoandarereturningtoitafternothaving
worked with it for years

Ifyou fallinto group one, just start with part |, then read parts [l and Ill. When you
are done with that, it’s time to actually get your hands dirty. Have a look at part IV
and pick a couple of the example projects that are of interest to you and get e.g. a
webserveroramonitoring systemup and running. Read or skip the suggested altern-
atives asyou please.

Then proceed to part V if you are interested in how using FreeBSD as a desktop
works. Evenifyouplantoonlyuse FreeBSD for serversitcanbeagood opportunityto
learn some more thingsabout the 0S. The choiceisyours of course. PartVlistherein
caseyou later become interested in the history of Unix, how some of the other BSDs
compare to FreeBSD and such.

Should you belong to group two, | recommend to actuallystart reading the fist two
chapters of part VI first. You will find quite a bit of information on how it all began
andwhywhatwe havetodayisthewayitis. Inadditiontothatyouwill getagood first
understanding of the broader *nix landscape and learn where FreeBSD and Linux fit
intoit. Thenread parts|, Iland Il

After finishing those, take a look at what part IV has to offer, pick a couple of pro-
jects and do useful things with FreeBSD. If you like what you see you might want to
read partV, too,and maybe give desktop FreeBSD a try. Evenif you only follow along
with an old laptop, there’s plenty to be learned about the OS that can be helpfulin
server-only environments as well. Maybe while working with this book you found
that you enjoy working with FreeBSD? Then read also the final chapter of part VI to
learn more about FreeBSD’s community and how to interact with it.

Ifyouareapersonthatfitsinto group three,youcanreally read whatever youwish.
The longeryou've been away the more will have changed, though and it might make
sense to start at the beginning. If you departed after FreeBSD 7.x, you will find that
among other things the old pkg_* tools have been replaced. Should you have left
after4.xyouareinforquiteafewgreatimprovements: Forgetdisklabel(8) and friends
andsay helloto GEOM. Meettherc.dinitsystemthatreplaced theoldBSDrc. Oh,and
CVSisdead, too!

2nd January 2021

pagel12/157 Penguin’s Guide to Daemonland

Chances ae that you can skip part | entirely. You may want to still read the first
chapter (Penguin Pitfalls), though, because it'll remind you of some things to watch
out for (and probably amuses you, too). Parts Il and Il should get you familiar with
what FreeBSD looks like today. Part IV could giveyoua couple ofideas forsomesmall
(or not that small) projects. And maybe you’ve always wanted to try out FreeBSD on
the desktop? There really has been no better time than now. A lot of the pains of
theold daysare gone-andwhile FreeBSD is admittedly less polished on the desktop
than Linux, it works well enough to be a sensible option.

When it comes to part VI, it completely depends on what you already know and
what's of interest to you. Take a look at the TOC and read what suits you. Besides...
welcome back!

2nd January 2021

Preface

About This Book

The Penguin’s Guide is an Open Source book on learning the FreeBSD®operating sys-
temwritten for Linux®users. Thereforeyou should alreadyhaveanideaofwhat Open
Source means aswell aswhat Linuxis as some prior knowledge is assumed (see next
section). However if you don’t really know what FreeBSD is just yet, that’s fine. You'll
be a confident FreeBSD user before too long if you decide to follow along.

You should have received your copy of this book for free. It was not written for
profit but in the hope that it would be useful to Linux users interested in getting to
know FreeBSD and adding some new skills to their tool belt. You are allowed - and
in fact encouraged - to give it to other people who might be interested in it [once
it's more than a draft that is likely to contain too many errors and would lead people
astray - don’t give it to non-experienced FreeBSD users, yet!].

AsanOpenSourceprojectyoucanhelptoimproveit: Sendincorrections, pointout
things thatyou didn’t understand or provide additional material / suggestions that
could bevaluableto futurereaders (and get creditif your contribution getsincluded
in the book). Contact info: freebsdbook@elderlinux.org

While you might think that you surely cannot contribute anything as a newcomer,
the BSD community has a different view on this. You being a newcomerisin factan
interesting attribute: There are things that a veteran will not see because of experi-
ence. Anunprejudiced opinion on something can bevaluable input or feedback.

Soifyoutakenotesduring yourjourneytolearn FreeBSD, we'd beinterestedine.g.
whatwas hard foryou tounderstand or get used to, what still makes little sense even
after dealing with it for a while, what could be made more beginner-friendly (and
probably how), etc. We would seriously appreciate if you were to let us know! Your
feedback can actually make a difference.

pagel4/157 Penguin’s Guide to Daemonland

Audience

As the subtitle states, this book is written as an introduction to FreeBSD for Linux
users. Whichmeansthereaderisobviouslyassumedtopossessomeprior knowledge
regarding Linux. But what exactly does “some knowledge” mean?

In general this book was written with “the average Linux user” in mind (as the au-
thor pictures one). That means if you are a complete novice who has only been run-
ning Ubuntu for a couple of weeks, you might not be able to follow easily all the time
and without doing some additional research. If however you've used more than two
or three distributions, are not afraid of the command line and know how the system
works in general you almost certainly qualify.

There are parts where some more in-depth knowledge is helpful, but the author
triesto make thisoptionalinformation. Youalso don't need programming skills, are
not expected to understand awk magick or have mastered vim wizardry nor are you
required to know every single package available for your preferred flavour of Linux.

Speaking of distributions: There are cases with references to particular distros.
Thisisusuallydonetogiveyouacomparisonwithsomethingyoumightalready know.
Ifyoudon’t know Gentoo for example and have no idea what portage is, such a com-
parison might not help you - but it will help others. If you care enough you could do
somereading onthattopic, too,and thus explore some more corners of the Linux eco-
system alongside your journey to learn FreeBSD. As always this is your decision.

Thereisnosingle distribution which this book is targeted at. If you have a Debian
background, that's perfectly ok. Fedora for you? Fine, too. The author has been an
Arch Linux user for years before venturing off into Daemonland “for a few weeks”
mostly out of curiosity (and then liked it there enough to make this place his home
permanently). Sowhiletheremightbeaslight prejudicetowardstheArchLinuxstate
of affairs, he is working with Debian-based distributions and CentQS, too, and has
also used Alpine Linux, Gentoo, Slackware and SuSE in the past as well.

lassumethere are few people out therewho areinto speciality Linux distributions
only (e.g. embedded Linux) and have no idea of common distros at all. If that is you -
perhapsyou’ll need to take a look at the manpage of some utility you're not familiar
with. On the other hand maybe you consider yourself an expert Linux user. In this
case some parts may be somewhat boring for you. Feel free to just skip them.

2nd January 2021

Penguin’s Guide to Daemonland page15/157

So who might want to read this book and learn FreeBSD after already being cap-
able of using Linux?

« Sysadmins who wantto (or have to) take care of some FreeBSD systems in addi-
tion to their Linux machines

* Peoplelooking forsomethingtoputintotheirresumethatsetsthemapartfrom
common Linuxadmins that are tena penny

 Employees wondering if using FreeBSD for some tasks might benefit their or-
ganization

« Programmers who are to evaluate basing their product on FreeBSD (e.g. for li-
censing reasons)

* Interested userswho'd like to take a look beyond the Linux teacup

» Users who like permissive licenses, democratic project leadership or who dis-
like monopolies and want to diversify their infrastructure

* Peopleunhappywith thedirection that Linuxis currently taking and who want
to check out alternatives

¢ AnyLinuxuserwhohasheardaboutFreeBSD a couple of timesand finallywants
to know more

Doyoufallintooneofthesegroupsordoyouhaveanotherreasontolearn FreeBSD?
Even if you are not entirely sure you might decide to simply read on for a couple of
chaptersand seeif you get the feeling of learning something worthwhile.

Why Even Bother?

Chances are that everything you know about FreeBSD, yet, is information you read
on the Internet. With this comes the usual problem of unreliable sources. There are
alot of people out there who will doubt that you are serious if you say that you work
with FreeBSD. Must be a joke, right? There also is this somewhat popular claim that
“BSDisdying”. And since “nobody uses FreeBSD anymore” (another such claim), why
should you even bother to learn it?

2nd January 2021

pagel16/157 Penguin’s Guide to Daemonland

n

The“BSDisdying” story can however be comparedto the “yearofthe Linuxdesktop
prediction: It has been made time and time again but never actually happened. In
fact FreeBSD isvery much alive, it just doesn’t get as much attention in the media, si-
lentlydoing itswork. There arevarious big companieswho use and support FreeBSD
for onereason or another, though. You will probably be surprised that almost every
person thatyou know benefits from FreeBSD at least indirectly!

You doubt that this is true? Let’s take a look at a few examples as it’s interesting
to seewhy some of those chose FreeBSD. Traditionally you'd have named companies
like Yahoo! and Hotmail (yes that Hotmail that Microsoft®hought and had trouble to
migrateto Windows™servers, thus continuing torun FreeBSD in-house foryears). It’s
not too hard to figure why they chose FreeBSD over Linux: While the latter did exist
at that time, it was in its early infancy and generally regarded a toy OS. FreeBSD on
the other hand was already a production-ready and battle-tested operating system
that had earned an excellent reputation.

Todayyou'd probably namewell-known companies like Netflixand WhatsApp first.
Both make use of FreeBSD, e.g. because of its world-class networking capabilities.
It'sonlynaturalthatacompanywhichaloneproducesroughlyl/3ofallthe US-based
Internettraffic (Netflix) is really interested in a high-performance networking stack.
Both companies also chose FreeBSD because they had staff already familiar with it.

There are others like Juniper whose JunOS for their firewall appliances is based
on FreeBSD and Sony used it as the building block for their Playstation 4’s Orbis OS
(and likely for the PS5, too). Both probably chose it for the simple reason that they
liked the license as it allowed them to close the source for their operating system.

Xinuos who acquired the rights to UnixWare®as well as to OpenServer®chose to
base their new product on FreeBSD. Providing real long-term support, they outclass
even Red Hat®, the recognized leader in LTS for Linux - by e.g. still supporting a 25+
year old product! Thinking in such long terms they probably wouldn’t have settled
FreeBSD if they didn’t believe in its maintainability and technical merits.

The LPI (Linux Professional Institute) has teamed up with the formerly independ-
ent BSD Certification group to offer a new certificate: The LPI BSD Specialist. It's the
same organization that issues the well-known LPIC-1 to LPIC-3 certificates.

Eventheserverofdistrowatch.org,asiteyousurelyknowifyou’ve beenusing Linux
for a longer time, runs FreeBSD. It started on FreeBSD, switched to Debian when the

2nd January 2021

Penguin’s Guide to Daemonland page17/157

hardware broke and the system had to be replaced in a rush. But with the next hard-
ware change, they switched back to FreeBSD. And probably nobody is going to argue
that these people who try out and review Linux distributions all the time did it be-
cause they don’t know Linux!

Also FreeBSD is pretty strong when it comes to storage. Thanks to its GEOM stor-
age framework it is extremely flexible when it comes to truly fit even exotic needs.
The excellent ZFS integration is another big plus for people who value their data. It
isno surprise that iXsystems®with their TrueNAS™platform s traditionally FreeBSD-
based (there’s a Linux-based version now, too, because their customers kept asking
for support of Docker containers).

Speaking of containers: FreeBSD came up with containerization back in the last
millennium. Its legendary jails have inspired Solaris’ zones and are somewhat sim-
ilar to the containers that are popular on Linux today - except they were conceived
with security in mind right from the start.

Then there’s the ports framework used for package building that allows for easy
customization of build-time options for various software. Gentoo’s portage system
heavilydraws fromthat concept (hencethe name). Customizing and rolling your own
packagesisvery easy. Building and updating FreeBSD from source is even easier.

FreeBSD offers three firewalls to choose from, among them Pf which is by many
considered the most advanced Open Source firewall in existence. Fed up with ipt-
ables? Try Pffor a change - and experience actually readable rule sets!

In many regards Linux and FreeBSD complement each other pretty well. Ready to
get the best of both worlds? Learn more about FreeBSD to find out how and where it
might fitinto your environment.

FreeBSD for Linux Users

Dear Linuxuser! Doyoustill remember the first steps you did with Linux? If you were
coming from an operating system like Windows, you were likely in for quite some
hours of reading, exploring and trying to figure things out. Obviously you didn’t give
up even if there were frustrating moments - because in the end being able to use an
Open Source operating system that doesn’t spy on you and puts you in control was
wellworth the effort.

2nd January 2021

page18/157 Penguin’s Guide to Daemonland

Here’s the good news for you: Since Linux and the FreeBSD both belong to the fam-
ily of so-called Unix-likes, they beara lot of similarities. You canrestassured that the
filesystem tree starts with the root directory (“/”) and you will find a familiar struc-
ture with “/etc”, “/dev”, “/usr/bin”, “/var/log”, and so on. The command “ls -lah ~"
will let you know which files, dot-files and subdirectories are in your home directory
along with information about permissions, human-readable sizesand so on.

Looks like you can feel at home right away, right? For a good part of affairs: Yes.
Sodoyou justhaveto figure out how the package manager works and be good to go?
Notentirely. While many thingswork the same thereare also quite a few differences.
Many of those are obvious when you encounter them but some are more subtle and
beartherisk foryoutotrip over. Ifitwasn't for those differenceswhich include some
of the strong points of FreeBSD, it wouldn’t make too much sense to dig into said op-
erating system. You could just try out some different Linux distribution. Also you cer-
tainlywouldnt need a book like this.

Getting back to the examples above, you will find some “odd” things if you look at
the filesystem hierarchy a bit closer. E.g. there’s no “/proc” on FreeBSD (at least not
by default that is). While you can of course retrieve information that you'd expect
from the process filesystem, you do that (as well as setting values) via the sysctl(8)
command.

You can configure the SSH daemon in “/etc/ssh/sshd_config”, but even if you've
installed sudo, there won’t be a “/etc/sudoers” file - because it is in another place
instead, “/usr/local/etc/sudoers”! Pretty strange, isn’t it? No, on the contrary, and
here is why: FreeBSD ships with a lot of basic programs that are considered part of
the actual operating system (often called base system or sometimes just as base).
Any third party package is kept separate from the base system. Those packages live
in“/usr/local” and its subdirectories. While at first it's a new concept to grasp, a lot
of peoplecometoappreciatethatcleanseparationbeforetoo long (especiallywhen
they realize that there are real benefits to it).

Should you forexample be used to working with “ls-v” on Linux you’lL find that this
flagisnotavailablein FreeBSD’s version of [s. On the other hand, there’s functional-
ity there which is not present in GNU coreutils’s [s. As you can see, FreeBSD - while
not wildly different - is different enough from Linux to warrant your attention when
dealing with it. You will also have to re-learn a couple of things.

2nd January 2021

Penguin’s Guide to Daemonland page19/157

The best advice | can give you at this point is to look at differences with an open
mind. RememberjusthowdifferentLinuxisto Windowsand howstrange things prob-
ablywerewhenyoufirstencountered them. Judging Linuxfromapointof viewwhere
the way Windows handles things is “normal” will lead to looking down upon Linux
for being different. It takes an open mind to accept that differences can be -and in
this case most often (filesystem organization, package management, modularity, ...
actually are - for the better.

The same thing is true if you compare FreeBSD to Linux. Try not to fall into the
trap of considering things you are more familiar with as “superior” automatically. If
you're newtosomethingyou cannotreallyjudgeitasyouaremissinginformationon
why itis done that way. Later you might find out what the reason is and what looked
justplainweird before mightturn out to be a perfectly sensible solution - orevenan
unsuspectedly brilliant approach to certain things.

2nd January 2021

Part |.

FreeBSD Quickstart

1. Popular Penguin Pitfallis!

Placeholder

2. (Some) Important Differences to be
Aware of

3. Your FreeBSD Toy VM

4. Administration Basics for the
Impatient

5. ldentifying “Linuxisms” and Living
Without them

Part Il.

Managing FreeBSD

6. Installation

7. Disk Partitioning and Filesystems

8. System Boot & Service
Management

9. Users and Permissions

10. Networking

11. Updating the OS

12. Timekeeping

13. Package Management

14. Logging

15. Firewalling

16. System Mail

17. Foreign Filesystems & FUSE

Part 1Il.

(Slightly) Advanced Topics

18. Breaking and Repairing the System

19. Using ZFS

20. Tuning FreeBSD

21. Secure Levels

22. Updating from Source

23. Using Ports

24. Jails

25. Bhyve

26. mfsBSD

27. Linux Emulation

Part 1V.

FreeBSD by Example

28. Rolling Customized Packages

29. NFS Server

30. ZFS Replication

31. Simple Web Stack

32. DNS Server with BIND

33. VPN with OpenVPN

34. Jailing Web, DB, BIND and
OpenVPN

35. Managing TLS Certificates with LE

36. Mailserver with Postfix

37. Doing Backups with Bareos

38. Monitoring with NRPE & Icinga

39. PXE Booting Multiple Operating
Systems

40. Configuration Management and
Automation with SaltStack

Part V.

FreeBSD Workstation & Laptop

41. Graphical FreeBSD with X11

42. Window Managers

43. Desktop Environments

44. Display Managers

45. Making Your Desktop More
Comfortable

Part VI.

Background Information

46. A (very) Brief History of Unix

Reading this chapter is not in any way a hard requirement. Both Linux and FreeBSD
are very much usable without knowing a lot about where they come from. Should
you have absolutely no interest in history whatsoever, you’ll probably want to just
skip this background chapter.

If however you have a sense for history you will most likely enjoy the following
pages. Knowing a little about computer history can help you a great deal in under-
standing where technology as we know it today came from - and thus why it is like it
is. Thatin turn helps you to make the most out of it.

ClaimingthatUnixhasaninteresting historyisan understatement. Sure, thereare
partsthatareonlyofinteresttoafew people. But believeitornot, thereactuallyare
Unix historians and even organisations like tuhs.org (the Unix Heritage Society) try-
ing to preserve as much of its history as possible! Other parts of the Unix story how-
ever could well have originated froman agent thriller (e.g. conspirative phone calls
askingapersontocometoacertain placewherethenatapewiththe newestversion
of Unixwas found...).

There are awhole lot of hilarious to downright unbelievable stories surrounding
Unixlikee.g. AT&T declaring Unixasindustrial waste (sic!) for tax reasons when they
licensed it to others! I'm not going into a lot of detail here, though, merely aiming to
giveyou a useful overview. Anybody choosing todig deeperis guaranteed more than
one good laugh, though. The history of Unix is full of irony, random but important
events and such. See literature in the appendix for some recommendations.

Unix - believe it or not - is already half a century old! The world was quite differ-
ent back in the day and it’s common knowledge that in the extremely fast-paced IT
business one decade worth of progress can already alter things beyond recognition.
Thereforeifyour hairisn’twhite (or at least grey) already, a little history may bein or-
derifyouasapersonlivingintoday’sworld want to grasp just what made Unix such
aspecial thing.

page124/157 Penguin’s Guide to Daemonland
46.1. Mainframes and Multics

Itallbegunintheageofverybig,veryslowand extremely expensive mainframe com-
puters. Those were designed according to a “Batch-Processing” model: Programs
were written offline and stored e.g. on punch cards; those were then queued as jobs
andrunoneafterthe otherinorder to avoid wasting precious calculation time wait-
ing for slow typing humansto finish inputting their program. Eventually the calcula-
tions were done and the output was handed back to the programmer (maybe hours,
maybe days later!). Letting a user program directly at the computer and having the
machine beidle for that time was unthinkable in most environments.

The severe downsides of this practice are obvious. So a new idea arose in the mid
1950’s: The Time-Sharing concept. If one person occupying the computerwasa guar-
antee for “dead times” while entering the program interactively - couldn’t this prob-
lem be overcome if multiple users worked on the same machine simultaneously?

Asnew computers became available, fast enough to allow for the constant switch-
ing required to do this, the influential Compatible Time-Sharing System (CTSS) was
createdintheearly1960’s. “Compatible” in this case meant thatit was a system that
did the classical Batch-Processing of the “main” programs while at the same time
distributing some processing time to allow for interactive use by programmers at a
terminal.

In the mid 1960’s MIT, General Electric and AT&T’s Bell Labs begun to work on a
Time-Sharing operating system called Multiplexed Information and Computing Ser-
vice (or Multics). It was extremely ambitious and brought with it a plethora of new
ideas. One of those was the so-called “single-level store”, a concept that basically
did away with the distinction between data in RAM and on disk. A file and process
memory were the same thing (called a segment) from the perspective of the applic-
ation. This by the way is where the familiar [s command in Unix really comes from:
The abbreviation actually once meant “list segments”!

Multics pioneered a hierarchical filesystem (i. e. it supported subdirectories) and
already offered symbolic links. The OS featured background processes (system ser-
vices) which were already called daemons. It also introduced dynamic linking, al-
lowing programs to use external libraries linked in at runtime as well as many other
novel ideas.

2nd January 2021

Penguin’s Guide to Daemonland page125/157

The development of the system had already taken a long time and burnt a lot of
moneywhenin1969BellLabsfinallylost faithinitand pulled out of the project. Mul-
ticswas eventually completed by the remaining team and marketed but is regarded
asacommercialfailureby most people. Itwascriticized as overly complex, (initially)
too slow and big as well as too expensive.

46.2. Ancient Unix

What was to become Unix started with the dissatisfaction of several Bell Labs em-
ployeesoverthelossofwhattheyfound had beenaconvenientplatformforprogram-
ming: Multics. They made scratches (on paper and boards) for one of the things that
had fascinated them most with it - a hierarchical filesystem.

KenThompsondecided thathewould write hisown operating system. As perceived
complexity had been one of the major reasons for abandoning Multics he wanted to
go the opposite way: A radically simple operating system for programmers. He cre-
ated some prototypes of a kernel to run on the GE-645 mainframe that they had used
sofar. But hiseffort suffered a severe blow quite soon: With Multics cancelled within
Bell Labs, it was decided to dispose of the expensive GE machine.

Someofthestaffstillwanted tocontinue. Therewasalittle problem, however: The
official statement of Bell Labs was that after the Multics debacle they would not par-
ticipateinanyworkrelated tooperating systemsanymore! Asmallteam comprising
of Thompson, Dennis Ritchie and a few others decided toignore this and to continue
with OS programming nevertheless. They tried to come up with good arguments to
buy a computer for them to use but failed to convince their superiors.

Thompson went looking for a machine they could use for the their work (and also
to run the game on that he had written: Space Travel!). He found a spare machine in
another department,anold DECPDP-7 - not quite what they wanted but better than
nothing. The machine didn’t provide a programming environment, so they initially
had to use the GE-645 to generate the code for the PDP-7 and then transfer it over...
The machinealso proved to be too slow for the game, but it was at least sufficient for
averysimple OS.

Initially thisunnamed projectwas a primitivesingle-user and single-tasking oper-
ating system. The team continued to improve their OS and (due to the very limited

2nd January 2021

page126/157 Penguin’s Guide to Daemonland

memory available) soon wished they had more capable hardware to develop on -
which was completely out of question without the blessing of their bosses.

When the patent department expressed the need for a text processor, Thompson
and Ritchie jumped the opportunity and offered to provide one. Sure, on closer in-
spectionitwould requirean operating systemto runon, too - but of course there was
no need to talk too much about that aspect specifically, was there? So the reference
to the OSwas hidden in a footnote - and this time the superiors took the bait.

With it being an official project now, a newer PDP-11 could finally be bought and
Unixwas quickly ported to the new machine. After completion of a text editorand a
text-formatting utility which received praise from the patent department, the team
hadsucceeded in making their formerly secret OS project not justan official butalso
asuccessful one.

Peter Neumann proposed the Name Uniplexed Information and Computing Ser-
viceasapunon Multics. Following a joke by Brian Kernighan (“Emasculated Multics
is Unics”), the system that now supported two users concurrently, was pronounced
“eunuchs” initially. Itis unknown how the name morphed to Unix later.

Other departments within Bell Labs also acquired PDP-11s and chose to run Unix
on them instead of the official DEC operating system. A little later man pages were
invented to help users new to the system.

Variousversionsoftheso-called Research Unixexisted at firstwithin Bell Labsand
later outside as software licensed to others, too. Since the actual system was con-
stantly under development, these versions refer to the editions of the manual that
came with the system. Here’s just a couple of facts around these:

* V1(Nov.1971): Unix on the PDP-11, for the first time with a manual
* V2 (Jun.1972): Ccompiler included

« V3 (Feb. 1973): Invention of pipes, filesystem split between /bin and /usr/bin
(‘usr" actually stood for “unix system resources")

* V4 (Nov. 1973): Operating System re-written in C, the programming language
created by Ritchie; first version to be presented to the outside world

* V5(Jun. 1974): Widely licensed primarily to universities; ported to various ma-
chinessimilarto the original PDP-11/20

2nd January 2021

Penguin’s Guide to Daemonland page127/157

« V6(May1975): Firstporttoaverydifferentplatform; licensesavailable for com-
mercial users

* V7 (Jan. 1979): Introduction of the Bourne shell and many classic Unix tools
like awk, make and tar

There were versions V8 to V10 between 1985 and 1989, too. Those late Research
versions were mostly used internally before the team moved on to creating a suc-
cessor to Unix (named Plan 9). However they did not have as much of as an impact
on the main Unix development anymore, since a lot had happened in between. V8
was also based on a BSD release (4.1c). More about that ina minute.

46.3. Law, Money — and Users

Therearetwomoretopicstoknowaboutinordertounderstand thetruly uniquesitu-
ationwhichmadetheUnixsuccessstorypossibleatall. Oneislegal requirements for
and monetary interests of AT&T, the other is Unix user’s efforts of organizing.

As stated above, Unix was licensed to various educational and commercial organ-
izations. This did not happen deliberately because managers understood what they
had with Unix, though. On the contrary! During that time, AT&T still maintained its
telephone monopoly and after antitrust cases it was bound by special regulations.
One of these forbid it to engage in any fields outside of communication (so the com-
puter business was clearly off limits) and another required them to license their pat-
ents to others upon request. The company didn’t care for software.

After Unixwas presented onaconferenceand papersaboutitwere published, alot
of academic interest in the operating system quickly built up. In the beginning the
license fees were pretty low ($99), but before too long, AT&T was nearly blown away
by the number of licensing requests and eventually more people (staff in the patent
department, lawyers, etc.) did Unix-related work than there were programmers im-
proving the code! Thecompanybeguntorealizejust howvaluable Unixactuallywas.
Licensing fees kept increasing and increasing with each new edition (to a towering
$250,000 in the end).

Ironically thisearly success of Unix threatened its further development. Thanks to
their experiences around Multics, Thompson and Ritchie had realized early on how

2nd January 2021

page128/157 Penguin’s Guide to Daemonland

important the community aspect would be for such a project if it was to thrive. How-
ever the company’s lawyers were busy fighting the forming user communities - the
more successful Unix became the harder they tried!

Anexampleofthisisthestoryofthelegendary Lions’Commentary on UNIX 6th Edi-
tion. The book was written by Australian professor John Lions for his computer sci-
ence courses and included the source code for the kernel. It was available for Unix
licensees and spread like wildfire. This was possible because the license of V6 Unix
allowed classroom use of the code. When V7 was released, AT&T specifically disal-
lowed this use, so there never was a new edition of the book and many universities
just stopped teaching practical Unix, again concentrating on theory only. The Lions
book however became the most photocopied printed work in computer science.

It's also very interesting why Unix users had such a huge drive to get organized in
thefirstplace. Thetermsunderwhichyoucould getUnixwerealittle...well, let's say:
special. They are commonly summed up like this:

« No advertising

* Nosupport

¢ No bug fixes

« Paymentinadvance

Sounds extremely tempting, doesn’t it? Since users were officially left alone with
the “as-is” software, they had to help each other. Forming user groups was simply a
logical step to take and people soon did that. As the code for the system was avail-
able, users made fixes themselves and shared them. Often they were applied to the
official Unix as well and thus included in the next edition. Many new features also
started as such outside contributions.

Eventually AT&T wassubject toa forced break-up. The newsituation enabled Unix
to becomeavery profitable commercial product afterall -whichin turn led to more
trouble with the community that had formed around it, considering it their system!
AT&Thadalreadytaken manyactionsthatmadethe “weagainstthem” thinking grow.

2nd January 2021

Penguin’s Guide to Daemonland page129/157
46.4. Original BSD: The Berkeley Software Distribution

The University of California, Berkeley has been animportant hot-spot in Unix devel-
opment. Bill Joywho later co-founded Sun Microsystems, wasveryactive inthe CSRG
(Computer Systems Research Group). He was responsible for BSD, the Berkeley Soft-
ware Distribution. 1BSD and then 2BSD consisted of additional programs for V6 Unix
(the latterincluding e.g. Joy's c shell and his new visual editor: vi - which is still pop-
ulartoday at least in form of its offspring vim and neovim).

When the CSRG got VAX minicomputers they begun working with UNIX/32V, the
VAX port of V7 Unix. A large portion of the kernel was rewritten to support virtual
memoryand manyotherimprovementswere made. Since the changesweresoinvas-
ive, Joy chose to distribute the entire operating system as 3BSD. Those releases were
sold to holders of valid Unix licenses - and soon people commonly purchased Unix
from AT&T for the license only but actually installed and ran what was commonly
called BSD Unix instead.

Eric Allman (known e.g. for sendmail) said about early Unix: “[..] 4th Edition was
pretty flaky. It was a system that only a researcher could love. It was slow. It didn’t
have a lot of tools.” While the situation had somewhat improved with later editions,
itwas BSD where things really took off; A new filesystem, the Fast Filesystem was in-
troduced, new technology like Unix domain sockets included and over time practic-
ally no part of the OS remained untouched.

Thisledtoincreasing complexityand some Unix purists therefore declared V7 Unix
the pinnacle of its evolution. However it was BSD that made Unix useful and usable
for real-world tasks. As the word spread, CSRG received funding e.g. by DARPA (De-
fense Advanced Research Projects Agency of the US Department of Defense) after
they had chosen to use it for their ARPANET project. Part of the contract was to put
an early TCP/IP stack into BSD. Joy refused to use the stack provided by an outside
company because he felt the implementation was simply not good enough. Instead
he chose towrite his own much fasterimplementation and DARPA eventually accep-
ted that it was superior.

CSRG decided to release the TCP/IP code under a very permissive license to the
world as Networking Release1 (or Net/1). Sinceitwasall their code, noblessing from
AT&Twasrequired to do this. The novel thing herewas that it was released to the gen-

2nd January 2021

page130/157 Penguin’s Guide to Daemonland

eral publicwithout requiring any proof of a valid Unix license as had been required
for3BSD and 4BSD so far.

Soon the idea came about to make another such freely available release with all
the Berkeley bitsand not just the network stack. While working on that, people real-
ized that they had replaced such a huge part of the operating system that it was in
factfeasibletoactually replace the remainingtools, too. The projectwascompleted
inoneand a halfyears. Acouple of files for the kernel were all the AT&T code that re-
mained. They were deleted and NET/2 (which was as such not a complete working
0S but very close to that) released.

When the funding ended and after legal trouble (more on that in a minute) the
(SRG was dissolved and development of BSD at Berkeley ceased after the final gift
to theworld in form of 4.4BSD-Lite Release 2.

46.5. Commercial Unix and Standardization Efforts

After AT&T was legally able to compete in the software market, they didn’t hesitate
for long: Various Unix-related projects as well as the newest evolution of V7 were
combined to form what was called System II]. This was the first commercial release
Unixand the end user would no longer get the source code with the product. One im-
portantinnovation was the introduction of named pipes.

AT&T licensed System Il to various companies which then sold Unix derivatives.
Products like HP-UX (HP), Irix (SGI), Sinix (Siemens Nixdorf), Ultrix (DEC) and Xenix
(Microsoft) were initially based on System llI.

Unixfollowed aversioning schemethat canstill cause confusiontoday; don’tstart
looking for either System I, [or IV - there was no such thing. System Il was quickly
succeeded by SystemV, often abbreviated SysV. Strictly speaking it was the name for
AT&T Unix, but today it's most often used for the family of operating systems derived
from it (as opposed to the BSD-based ones).

In1984 a European consortium initially known as “BISON” (for Bull, ICL, Siemens,
Olivettiand Nixdorf) was formed and renamed to X/Openwhen Philipsand Ericsson
joined. The common goal of the founders was to promote open standards in the IT
field. X/Open started creating a specification for Unix-derived operating systems
with the aim of increasing interoperability of applications and lowering the cost for

2nd January 2021

Penguin’s Guide to Daemonland page131/157

porting them between the various Unix derivatives. The consortium published 4 is-
sues of its specifications as X/Open Portability Guide (XPG1 to 4) over the course of
the next eight years.

Othersalsonoticed that thevarious Unix-derived systems had diverged quite a bit
- most notably between BSD-based and SysV-based ones but also among different
systems of the same family. To lessen the problems of portability issues with soft-
ware that were growing bigger and bigger, in 1985 an effort was made to come up
with a well-defined standard that all Unix vendors should follow. This lead to POSIX,
the Portable Operating System Interface. Compared to XPG, POSIX has a narrower
scope, concentrating on the direct OS interfaces.

46.6. The “Unix Wars”

With their new System V, AT&T tried to reclaim full control over Unix again and thus
to battle BSD. Promotional material like buttons and posters were made that said:
“System V: Consider it standard”. The BSD users responded the same way, but theirs
read: “4.2>V" (4.2BSD was the latest release at the time).

In general the camps and situation were summed up by Eric S.Raymond as “Short-
hair programmers vs. long-haired ones”: More business-oriented people (and com-
panies) sided with AT&T, the more technical usersand admins tended to be in favour
of BSD. The rivalry between these two camps and the race for more features domin-
ated much of the 80's. It's known as the “Unix Wars”.

Initially BSD had a head startespecially due to the availability of TCP/IP but newer
System Vreleases also added interesting features of their own. When AT&T realized
that they couldn’t beat BSD that way a new strategy was needed. They landed a real
coup when in January 1988 they announced they’d buy stakes of Sun Microsystems
(Sunwas the most important BSD-based vendor of the time). But not only that, they
would also team up with Sun for a “Unix unification” project!

Thesoftware outcomeof thiswas System VRelease4 (SVR4) which integrated many
BSD partsintothesystem. That made it possible to run BSD programs on SysV Unix by
just using different paths. Equally important however were the actions of the other
Unixvendorswhobelieved thatthisnewsituationwould severely threatentheir busi-
ness.

2nd January 2021

page132/157 Penguin’s Guide to Daemonland

Seven companies (Apollo, Bull, DEC,HP,IBM, Nixdorfand Siemens)went onto form
the Open Software Foundation (OSF) with more joining quickly until the body had
more than a hundred members. OSF’s goals included gaining more influence on the
POSIXstandardizationaswellas creation of 0SF/1,a Unix system meant to compete
withAT&T'sand Sun’swork on SVR4. Another noteworthy technologythatcame from
OSFwas the generally well-received Motif GUI specification and widget toolkit.

AT&T and Sun (supported by a couple of other companies) founded Unix Interna-
tional (Ul)in response. Officially to also promote open standards butin fact for reas-
ons of a counterbalance to the OSF. So for the second phase of the Unix Wars, the
former rivalry between SysV and BSD had shifted to an inter-SysV rivalry between
two influential groups.

The “Wars” finally came to an end as the participants eventually realized that the
biggest threat was not the other side but in fact an outside actor: Microsoft. Unix
fragmentation and infighting had allowed the Redmond-based software company
toriseininfluenceand Windows NTwas perceived a possible game-changer. Willing
to work together now, in 1993 the big Unix vendors formed the Common Open Soft-
ware Environment initiative (COSE). AT&T pulled out of the Unix business the same
year,selling the Unix System Laboratories (USL) including trademarks to Novell. The
latter sold the exclusive right of utilisation to X/Open.

COSE set new goals: Real interoperability and standardization of what already ex-
isted without a strategic agenda for any product group. The standardization efforts
led to what later became known as the Single Unix Specification (SUS). A notable ef-
fort was the introduction of the Common Desktop Environment (CDE) that used the
Motif widget set and was available for many Unix derivatives.

The success of the new initiative led to the actual merger of the former compet-
itors OSF and Ul in 1994 under the name OSF. Another merger, the “new OSF” with
X/Open, eventually formed The Open Group which is the holder of the UNIX trade-
mark and maintainer of the SUS to this day.

46.7. BSD Outside UCB

Commercial Unixexisted for the PCplatformin form of Microsoft’s Xenix, IBM's PC/IX
or Sun’s BSD-based SunOS for the short-lived Sun386i. But when 386BSD (also called

2nd January 2021

Penguin’s Guide to Daemonland page133/157

Jolix) was released in 1992 it meant a revolution because it was publicly available
as free software under a BSD license! William and Lynne Jolitz had ported 4.3BSD
Net/2 to the PCand created the missing parts (left out from Net/2 because they were
AT&T-owned code).

After initially being a huge success, project development slowed down consider-
ably and eventually came to a halt. Users of 386BSD collected bug fixes and began
releasing unofficial patchkits. Asdisagreements between the Jolitzes and the patch-
kit maintainers arose, one group started work on NetBSD in march 1993. Their goal
was a more open development model for a multi-platform BSD-based system they
wanted to create. Independently another group of dissatisfied users founded the
FreeBSD project about three months later.

Someofthe peoplewhohad beendeeplyinvolved with BSD founded Berkeley Soft-
ware DesignInc. (BSDi)in1991. BSDisold their4.3BSD-hased 386/BSD operating sys-
temthatwas partly proprietary. Alicense for 386/BSD (including the source) was just
below $1,000 whereas an AT&T source license at that time billed at about $20,000.
This caused huge irritation on the side of AT&T and in 1992 the now legendary USL .
BSDi lawsuit was filed.

BSDi accepted liability only for the missing files they had created and argued that
therest of their product was built from the freely distributed BSD sources. The judge
agreed. Not willing to accept this, USL chose to widen the case and sue the Univer-
sity of California, too. They claimed that with Net/2 the university had breached the
license contract, diluted USL’s trademark and infringed on their copyright as well
asmisappropriated Unix trade secret. They asked the court for a preliminary injunc-
tion to prohibit BSDi to distribute their software until the case was decided.

In1993thejudgedeniedthepreliminaryinjunctionafterrecognizingthatUSLhad
no legally valid copyright over 32V Unix (that BSD was derived from) and had failed
to provide evidence for any obvious trade secret. Only days later the university filed
its countersuit.

WithSVR4AT&T had included the TCP/IPstack thathad originated at Berkeley like
a duck takes to water. But when they did that, they simply stripped the UC copyright
notices so it appeared as if it was their code. The original BSD license requires that
credit be given to the authors and USL had carelessly ignored that. UCB demanded
that USL needed to reprint all manuals with the due credit among other things.

2nd January 2021

page134/157 Penguin’s Guide to Daemonland

After USL was bought by Novell, the new decision makers favoured a settlement
out of court that was eventually reached in early 1994. It meant that only very few
of the files needed to be omitted from the upcoming 4.4BSD-lite release and several
modified to show proper copyright notices. USL on the other hand agreed to not file
future suits against users of the 4.4BSD-lite release.

46.8. GNU, MINIX and Linux

Irritated about the continuing proprietarization of Unix, in 1983 Richard Matthew
Stallman (RMS) had started the GNU project (‘GNU’s not Unix”). The goal was to cre-
ate an operating system that was portable so it would not die when an ageing hard-
ware platform was retired. It also had to be freely distributable for everyone - and
the source should always be available to study and modify.

The project chose to be Unix-compatible because that OS was already quite popu-
larand RMSbelieved thatitwould be very beneficial to the projectifalot of software
was already available for it. Another plus was Unix’ modularity: As the system con-
sisted of many smalltools, those could be replaced one by one rather than requiring
one huge effort.

RMSstartedwork onthe GNU Emacseditor rightaway (initiallybased onthe James
Gosling version but effectively replacing most of the code) and later did the first ver-
sion of the extremely popular GNU Compiler Collection (GCC, which originally stood
for GNU C Compiler). Other critical components like the GNU C Library (glibc) and
the BASH shell were created in addition to adoptions of many (often enhanced) Unix
tools.

In 1985 Stallman also founded the Free Software Foundation (FSF), a non-profit
corporation. It was formed to help the GNU project, to provide stewardship of the
GPL family of licenses and to promote free software in general.

GNU is supposed to be a complete operating system. But there was - and in fact
still is - a problem: While the various tools and libraries made good progress pretty
soon, the project’s kerneldidn’t. They had chosen a microkernel design and while at
the time it looked like that would be the future of operating system kernels, it also
brought with it lots of complexity. GNU’s HURD is still not considered production-
ready today!

2nd January 2021

Penguin’s Guide to Daemonland page135/157

Verydisappointed that Unix V7 could no longer be used at his university due to the
changesinthelicense, Andrew Tanenbaumdecided thathewould writea small Unix-
like operating system specifically for teaching. In 1987 Tanenbaum published his
textbook Operating Systems: Design and Implementation and released MINIX 1.0.

The first version of MINIX was system-call compatible with Unix V7. One major
point where Tanenbaum chose to go a different way was implementing a microker-
nel architecture (which would later lead to the so-called Tanenbaum-Torvalds de-
bate over Linux’s monolithic kernel approach). Version 2 of MINIX added POSIX.1
compliance and a TCP/IP stack among other things.

Initially not free software (Tanenbaum’s publisher did not agree with publishing
code that could be copied freely), in 2000 MINIX 2 would be re-licensed under a BSD
license. The first version of MINIX 3 was released in 2005 and while it’s still meant
to be useful in education, a new goal of providing a fault-tolerant system meant for
high availability environments was set.

In 1991 a Finnish Computer Science student posted a now legendary announce-
ment to the MINIX mailing list: He told the world about a free OS for i386 that he was
creating - “just a hobby, won’t be big and professional like gnu”. Linus Torvalds was
not only aware of GNU, he also mentioned running GNU tools on his new kernel.

As he continued to improve his kernel, others started playing with it. Since there
wasa kernelnow both free and working, itwasa logical thing to combine it with GNU
-and thatwaswhat people did. Over the course 0f 1993 several early Linux distribu-
tions came into existence, bundling the kernel with GNU software to create a usable
operating system from these components.

Atthistimethe USLv. BSDi case wasstill ongoing and the legal uncertainty of BSD
massively helped increase the popularity of GNU/Linux. As a system written from
scratch it was deemed free from potential legal trouble and as such pretty appeal-
ing for personal use as well as for business.

To not keep quiet about one more oddity, the so-called SCO-Linux controversies
need to be mentioned. Caldera, a company that was one of the early Linux distribut-
ors, renamed itself The SCO Group after acquiring the Unix part of SCO (whichinturn
hadacquired UnixWare from Novell). They then started attacking Linux withvarious
claims about Unix code in Linux and sued several companies like IBM, Red Hat and
Novell.

2nd January 2021

page136/157 Penguin’s Guide to Daemonland

This amusing / sad (depending entirely on your sense of humour) story is still on-
going. The SCO Group has failed to provide any evidence of copyright infringement
and went bankrupt over the process. After selling their active business they were
renamed once more and now bear the name The TSG Group, their only remaining
“property” being the ongoing lawsuits...

46.9. Open Source vs. Closed Source Unix-likes

During the time when commercial Unix was booming, few people would have even
deemed it possible that the leading Unix systems could ever be dethroned by one of
those Open Source upstarts. Exactly thisis what did happen however.

The once pretty important IRIX barely made it into our millennium: In 2001, SGI
announced to shutindown and end support in 2013. HP-UX is not entirely dead, yet,
but HP bet on the wrong horse. Their Unix variant is available for their old PA-RISC
architecture as well as the Intel Itanium that succeeded it. The latter platform has
commercially failed however and while that has been an open secret for a while, In-
telannounced the formal discontinuationin 2019.

Former top dog Sun felt the pressure mostly from Linux for a while before adopt-
ing a strategy of Open Sourcing their operating system as OpenSolaris from 2005
onward. Sun decided to completely open everything up as far as possible, includ-
ing their perceived crown jewels like ZFS and DTrace. In 2010 then Oracle bought
Sunandclosed down Solarisagain - but did not show much effort to keep the system
from dying. In late 2016 Oracle cancelled the upcoming Solaris 12 and put Solaris
11 in maintenance mode. Massive layoffs in the following years crippled the team
so much that no sane person believesin areal future for Solaris anymore.

AT&T Unix, Xenix, UnixWare and SCO Unix / SCO OpenServer ended up in Xinuos
OpenServer. The latest release is mixed source (partly open and partly closed) and
based on FreeBSD. OpenServer is still alive in the enterprise sector but its market
shareis probably not big enough to bevisible easily.

The only vendor whose proprietary Unix seems to still have a somewhat bright fu-
ture is IBM. AlX is alive and officially still a somewhat popular option but not even
IBM denies that many of their customers prefer Linux over it. And market analysts
note thatwhilein October 2018 IBMannounced to take over enterprise Linux distrib-

2nd January 2021

Penguin’s Guide to Daemonland page137/157

utor Red Hat for 34 billion (!) dollars US, they surely don’t spend such an amount of
money on AlIX development. Soit’s not hard to read the signs on the wall for another
commercial Unix, either.

Today Linux is everywhere. In about 2004 it took the lead on the Top-500 super-
computers - and in 2018 it reached a share of 100% (!) in supercomputing. In the
mobile world, Linux-derived Android has a market share of above 87% in 2020, leav-
ing about13% for iOS, the only remaining serious contender. It's used in space, too:
Since 2013 it powers the computers on the ISS.

Andwhenitcomestoservers, the onlycommercial operating systemthatstillcom-
petes is Windows server. Since Linux is free, precise figures are not known. However
even on Microsoft’s own Azure Cloud the count of Linux installations has surpassed
that of Windows instances - and nobody (including Microsoft) is anticipating that
thiswill change again.

Speaking of the big Redmond-based company that declared Linux “cancer” and
foughtithard a decade ago... Today Microsoft is deeply involved with the further de-
velopment of Linux, giving large sums of money to be a member in the important or-
ganizations, paying developers pushing Linux forward and evenincluding more and
more of itin their "Windows subsystem for Linux”.

In all fields except for the PC desktop we've reached or passed the point where
there’s a new de facto monopoly. And while it’s certainly a good thing that this new
monopolistis an Open Source one, a monopoly is never a good thing, not even when
it's GNU/Linux.

Despitethismassive onslaught of Linuxdraining basically fromall of the commer-
cial vendors, FreeBSD has not seen a lot of growth but maintained a pretty stable
number of developers. With certain eventsin Linux land there has been renewed in-
terestin FreeBSD and it is starting to become more visible again.

For some years now the TOR project for example has been asking people to setup
more BSD-based exit nodes to diversify their network for a healthier infrastructure
that does not rely mostly on one operating system.

Whatwill be the nextsectioninabook like thiswhen we look back atourtimeina
decade or two? Will renewed enthusiasm for FreeBSD and other Open Source oper-
ating systems make a noticeable impact worth of being mentioned in history? Only
timewill tell.

2nd January 2021

47. Open Source OS Family Matters

This chapter is meant to help newcomers to BSD land get oriented. It'sanother back-
ground chapter; if you've already settled on FreeBSD and know (or don’t care) who
your neighbours are, you can of course skip it.

FooBSD, BarBSD, BazBSD? What's the thing with the various BSDs? Are these dis-
tributions? Don’tworry, you survived the Linux distro jungle, you’ll be fine over here,
too. But while BSD land is quite a bit smaller and definitely not as crowded, things
areworking a little differently. There are multiple BSDs - but they are not “BSD dis-
tributions”! You’ll soon know why.

Whenever there is more than a one of a kind operating system that’s truly unlike
any other, the similar ones are grouped into the same operating system family. For
example there is the once popular DOS family; some of its members being MS-DOS,
DR-DOS, ROM-DOS and FreeDOS.

Whether there actually is a Windows family or an NT family is somewhat contro-
versial. Some people say “Windows family” and refer to the various versions and re-
leases of Windows. In the author’s opinion that’s rather the Microsoft product line.
OthersarguethatthereisonlyMicrosoft Windowsand assuch thereisno family. Tak-
ing ReactOS as an Open Source Windows NT clone into consideration however, one
could speak of a Windows OS family (consisting of two systems).

EitherwayourtopicisUnix-and thathasahuge familytree. It'sinfactbigenough
that it comprises of two subordinate “families”; The System V line and the BSD line
(the background of both was covered in some more depth in Chapter 1). See the next
pageforasimplified diagramofthe broader Unix familyto getanidea (the complete
tree including lesser known systems would be much larger).

page 140/157 Penguin’s Guide to Daemonland

£ 5 2
§ ::858 8§ 8 §B3ggagags: aa¥a§%§§§%§§§§55§§§
E & g £ H
2
I
s 3 8%
2 = A @
BON=

Unnamed PDP-7 operating system’

Unix
9and 10
(last versions
from
Bell Labs)

121tol7)

969
1971 10 1973

197410 1975
1978
1573
1980
1381
1582
1983
1584

985
986
987
988
389
990
991
15992
953
94
995
96
997
998
999
2000

2001 to 2004
2005

2006 to 2007
2008
2009
2010
2011

2012 to 2015
2016
w17

[Source: Created by Eraserheadl, Infinity0 (Own work: CC-BY-SA-3.0, GFDL) - Image:Unix history-simple.svg, Levenez Unix History Dia-

gram, Information on the history of IBM’s AIX onibm.com, CCBY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7091465]

2nd January 2021

Penguin’s Guide to Daemonland page141/157

47.1. What are UNIX, Unix, *nix and Unix-likes?

Both FreeBSD and Linux are Unix-like operating systems. Linux was designed to be-
have like Unix but written from scratch. With GNU even the name clearly states that
it'snotUnix-andsoit’s not surprising thata GNU/Linux system is defined as a Unix-
like. FreeBSD on the other hand is derived directly from AT&T Unix (see chapter 1).
But why is it also Unix-like and not simply Unix? Weren't the original BSD releases
often referred to as “BSD Unix"? And why do you sometimes read UNIX in all caps?

What sounds a bit confusing is actually pretty simple: Today UNIX does not mean
a specific operating system but rather a trademark of The Open Group. Operating
systems that adhere to the SUS (Single Unix Specification) can get certified. Systems
thatarecertified, are “Unix” with no further requirements to be met. Apple got their
macOS certified for example. So that operating system is Unix even though it is tech-
nically and historically an offspring of the BSD line of systems.

FreeBSD on the other hand is not certified. It might be possible that it passes the
certification process if put to the test. To get certified involves quite a bit of money
handed over to The Open Group, however. And as FreeBSD is, well, a free operating
system, the project never had the spare money for a certification effort (there are al-
ways more important things to work on). For that reason FreeBSD is not (a) Unix as
far as the legal status is concerned. To underline its heritage some people do point
outthatitisa “genetic Unix”, though!

47.2. Major Differences Between Linux and *BSD
47.2.1. Complete OS vs. Distribution

Operating systems comprise of two distinct parts: The kernel (which is responsible
for managing the hardware and has full privilege) and what is called userland, the
various programs that come with the OS and use the kernel.

Thefirstand foremost difference between Linux and any BSD is that the latterisa
completeoperating systemwhereasLinuxis, strictly speaking, justa kernel. Bundled
withthe necessary userland parts - e.g. as GNU/Linuxwhich iscommonly just called
“Linux” aswell - itworks like a complete operating system, too. So what's the matter
really?

2nd January 2021

page142/157 Penguin’s Guide to Daemonland

For one thing Linux requires a distributor to combine the kernel with some user-
land tools to forman operating system useful for the average user. You disagree with
goalsofalltheexisting Linuxdistributionsand wantsomething that fitsyour special
needs? Given you have enough motivation, technical knowledge and resources, you
are free to create another one, adding one more Linux flavour to the list. Whether
you want to use a different package manager, ship some special tools by default or
really just want to modify the wallpapers - if you give it a name and decide to share,
there’s one more distribution. Some people might argue that with minor changes
it'sonly a remix or something, but a remixed distributed is distribution.

In BSD land it's very much different. You can do the same things, of course: Use a
different means of package management, replace some system tools and so on. But
that wouldn’t be a distribution but rather a new operating system of the BSD fam-
ilyand e.g. a FreeBSD-derivative. This is due to the whole system approach that the
BSDs follow. Thereis no single “BSD kernel” as there is the Linux kernel. OpenBSD’s
kerneliis vastly different from FreeBSD’s which is very much different from Dragon-
Fly’s - even though DragonFly BSD began as a fork of FreeBSD!

Toreallyunderstand whyBSD people emphasisethissomuch let’sresorttoasome-
what brutal comparison: The BSDs are whole operating systems whereas a Linux dis-
tribution is “a kernel plus a bunch of packages”. This may sound disrespectful to-
wards Linux and even like a superficial argument to set BSD apart but it isn’t. The
difference between the two models is actually pretty much user-visible and you will
often hear people say thataBSD system “feels much moreintegrated” due to the hol-
isticapproach.

Here’s an example of one of the benefits of doing things like Linux does it: Many
of theindividual tools are developed by separate groups and projects. As such a de-
veloperyouarerelatively free to playwith adding new featuresand changing things
inyour program. Being a responsible programmer you are not going to break things
for others deliberately, but it's not your duty to ensure that the new version works
perfectly fine on say, Gentoo RISC-V. Ifyou break that platform somebodyis probably
going to let you know or to send in a patch but it really is your decision how many ex-
tra miles you want to go. It's the downstream consumer’s (i.e. distributor’s) respons-
ibilitytonoticethe breakageanddealwithit. Thisallows for much fasterinnovation
among other things.

2nd January 2021

Penguin’s Guide to Daemonland page143/157

Let's assume that Linux distributors do a great job: They take the kernel, carefully
select the other software they use and probably patch that to integrate well into the
system. Therestillis a lot going on beyond their reach (if you're not Red Hat that is)!
Maybe there was this nifty new feature added to the kernel but you cannot use it, yet
- you probably have to wait until it's supported by glibc. And then you might need
to wait until even the more conservative (but influential) distributions finally ship
aversion of glibc that would support it. Before that happens many projects will not
bother to add support for the new feature to their programs. If you do not have the
resources to maintain a fork or heavily patched (and tested!) downstream package,
you're out of luck. You're out of luck, too, if one of the projects that your use case de-
pends on simply does not want to support that feature. In the latter case an interest-
ing featuremightactually never land and will eventually be thrown out of the kernel
again.

With the BSDs it works the opposite way. A new feature was added to the kernel
in the development branch? If it’s in the next release you can be quite sure that a
good part of the userland will use the new feature - and more importantly: It will do
so in a consistent way. At the same time you as the developer making the required
changes will want to make sure to not break RISC-V, because otherwise Cl will fail
and a light will turn red. This means that the BSDs have much more direct control
over their complete system allowing e.g. for a change to ls after only an internal dis-
cussion and without having to go through a long debate on the mailing list where
you discuss issues related to coreutils over at the GNU project. Just like the kernel,
FreeBSD’s ls is not the same as OpenBSD’s and each project can make adjustments
that makes it fit perfectly into their system but might have little chance of getting
accepted if discussed in a cross-OS discussion.

Another effect of this is that building e.g. FreeBSD is extremely easy to do. You
probably know the great Linux From Scratch book. There is no such equivalent for
FreeBSD - and if there were it would be a couple of pages at most. You can literally
build the full operating system (including the kernel, system compiler, all libraries
and tools) by issuing “make -C /usr/src buildworld buildkernel”. Yes, that’s all there
isto it! There’s no need to build any packages at all, the Makefile in the source tree
doesitall foryou.

2nd January 2021

page144/157 Penguin’s Guide to Daemonland

47.2.2. Updating

Updating packages on any Linux distribution is nothing that people are generally
afraid of. Yes, | broke my main workstation like four times while | was using Arch
Linux. Three of the four times it was my fault as | just went ahead and did the update
without reading about the respective “manual intervention” requirement that Arch
informs about on its web page. The fourth’ time it was actually a problem with one
of the packagesthatcould be fixed by downgrading and laterattempting the update
again. Butthat’snotabadrecord forableeding-edge rolling-release distributionin
severalyears.

What people experienced with Linuxdo have a bit more respect for however is dis-
tribution upgrades. I've had upgrades ruin a couple of Ubuntu installations beyond
repair (i.e. beyond the point where | deemed a fresh re-install to be more practical).
With CentOS for example you're expected to do a fresh install instead of a major up-
gradeinthefirstplace-there'sinfactnosupportedwaytoturnaCentOS7.xboxinto
CentOS 8.x for example. There is one for RHEL, but I've never done that. With other
distributions that I've used it's also a mixed bag, sometimes closer to Russian Roul-
ette, sometimes to “it will probably be fine”.

FreeBSD playsin an entirely different league in this regard. | manage servers that
have beeninstalled asFreeBSD 5.x,were using customized kernelsand softwarewith
manually picked compile-time options for years and happily continue to serve their
purpose as 12.2 with a GENERIC kernel and stock packages today. They usually sur-
vived several hardware upgrades, too. Thisisnotastory thatwill astonish any fellow
FreeBSD user, it's more the common case than the exception. Thisis another benefit
of the holistic system approach: While a Linux distribution upgrade gets fairly com-
plicated because of the nearly endless possible combination of packages that might
beinstalled, the FreeBSD base system for each installation of the same version and
revision is the same (assuming the same architecture).

WhenitcomestotheactualoperatingsystemonBSDitalmostdoesn't matterwhat
third party packages are installed or not. No rule without exception: There’s some
specialcaseslikee.g. additional kernelmodulesinstalled via packagesandincluded
in the user-defined system configuration. This could break your graphical desktop
for example until you update the packages, too. Also some applications might have
been linked against older versions of system libraries and won’t work after the up-

2nd January 2021

Penguin’s Guide to Daemonland page145/157

date until you reinstall the packages, too. What about packages that cannot be re-
placed because you specifically require anold version (think of that customerwho’s
throwing money atyou for keeping hisdarn old PHP 5.6 alive even though everybody
knowsyou shouldreally getrid of that)? FreeBSD provides compat packagesdown to
FreeBSD 4, providing system libraries from those releases and enabling you to con-
tinue running old software if you really must (even if you only have the hinary).

Changes in configuration do happen. However FreeBSD prefers to do the more in-
vasive changes incrementally and not all at once. After performing an updatetoa
new major release chances are thatyouwill receive warnings during systemstartup,
notifying you of deprecated options. If you read them and take action, you'll be fine
when those options transition from deprecated to removed in a future release.

Unlikewith Linuxit'salso notuncommon to update fromsource ratherthaninbin-
ary. If you customized your kernel, deliberately left out parts of the userland (e.g.
because they didn’t meet your licensing requirements) or something like that you
canstillupgrade the system pretty easy by building it from source. For DragonFly for
example upgrading from source is the only supported way to get to a newer release
without re-installing.

47.2.3. Documentation and Manpages

Manpages have been part of Unix for a long time and so both FreeBSD and Linux in-
herited them. The GNU project came up with the more advanced info pages which
support hyperlinks to other pages for example. In practise, info pages failed to suc-
ceed manpages - they are heavily used within the GNU project but have not seen
overwhelming adoption outside of it.

Since with most Linux distributions GNU tools are a central part of the operating
system, you will have to use info in many cases when you look for documentation.
Usually there's a manpage for the same tool, too - and it's not too uncommon that
the information you seek is in one of them but not the other. If you're really lucky,
the two documentation sources even disagree as they are out of sync, written by dif-
ferentauthors, etc...

Also the manpages for various programs are somewhat of a mixed bag: Some of
them pretty good and useful, some severely lacking and others next to or entirely
non-existent. As a result of that you will find that especially the younger generation

2nd January 2021

page146/157 Penguin’s Guide to Daemonland

of Linux users does know about manpages and info pages but will generally prefer
tosearch on the netif they need to figure out something.

All of the BSDs generally value good and accurate documentation very highly. A
mistake onamanpageisaveryseriousbugastheyare meanttobetheauthoritative
documentation for a program, kernel interface, configuration file (yes, really!) and
soon. A person who maintains documentation is not “merely” a docs committer but
assuch has exactly the same rights and esteem as a source or ports committer.

Of course documentation is never perfect and there are dark and dusty corners of
FreeBSD aswell. Butingeneralifyoucomparethe manpagesforonetoolonLinuxto
that of FreeBSD’s equivalent, you'll see a huge difference. If you are new to FreeBSD,
byallmeansdo give manpages another chance should you be one of the people who
mostly disregarded them on Linux! There are developers who have even switched to
FreeBSD for the reason of the much better documentation available there.

The same thing is true for other sources of official documentation. The FreeBSD
project prides itself in its handbook for example. It is a great source of information
for the newcomer and the long-time user alike. There are efforts to provide similar
material for various Linux distributions but most of these simply fall short of reach-
ing the same height of quality. One exception here is Gentoo which provides an ex-
cellent handbook (but then many fundamental design decisions of Gentoo were in-
fluenced by FreeBSD).

Do not fallinto the trap of heading to the FreeBSD wiki when looking for inform-
ation, though! While e.g. the Arch Linux wiki is a great source of information for
Arch users, FreeBSD’s wiki is actually meant for the developers. A lot of the pages
are horribly out of date and when you look at them you are supposed to notice this.
It's more of a place where developers put some notes for themselves or fellow de-
velopers without a lot of explanation for the common user. You might find what you
are looking for in the wiki, but be prepared for materialin pretty raw shape.

47.2.4. Licensing

While Linux hasembraced the GPL license, FreeBSD is committed to the BSD license.
TheformerisapopularoptionforOpenSourcethatbelongsintheso-called copyleft
familyoflicenses, thelatterisapremier member of the family of permissive or “copy-
center” licenses.

2nd January 2021

Penguin’s Guide to Daemonland page147/157

There have been fierce wars going on between supporters of both camps about
whatis “the best” license. When looking at the matter calmly as in sine ira et studio,
both families have different goals while both are supporting Open Source.

Theidea of copyleftis that code should remain free. So the licenses allow free use
but explicitly force any vendor using it to publish changed code under the same li-
cense again. Supporters of this model deem this necessary. You will hear the famil-
iar stories of greedy corporations taking free code and making a lot of money from
it while making it proprietary and thus essentially ripping of the Open Source com-
munity.

Whileindividualsinfavourof permissivelicensesdon’tlike theclosingdown Open
Source code either, they argue that the possibility of such an event is the price for
true freedom (“no strings attached”) and they are willing to pay it. Also they insist
on a small detail that copyleft advocates do not like to stress too much: With a per-
missive license there’s no closing down of the original licensed code. It's only pos-
sible to a closed-sourcederivative thereof! So it's more of a theoretical loss to the
world thananactual one.

There’sa point to both positionsand “who’s right” depends on the particular case.
However there are concrete consequences of license choices. For example Red Hat
is paying specialists to maintain old Linux kernel versions for their enterprise distri-
bution. They are forced to keep the source open, allowing other actors like Oracle or
the forming community of Rocky Linux to use their work free of charge. If Linuxwas
available under a permissive license they could just keep the source of their work
closed.

On the other hand Linux is having a really hard time with ZFS (involving lots of
drama). The code for ZFS is Open Source and in fact even under a copyleft license
- but under one that most people deem to be incompatible with Linux’ copyleft GPL
and thus falling on their own sword!

Another thing to consider is license complexity. If you feel like reading pages and
pages of legalese, go ahead an read the GPLv3 if you've never done so. Even if you
don’t feel like it you probably should do this at least once. It’s less important when
just using Open Source software yourself but still pretty enlightening. Should you
consider to base some project on such software you no longer should but actually
havetoread licenses-andto makereally sureyouunderstand theimplications. You

2nd January 2021

page148/157 Penguin’s Guide to Daemonland

probablyneedto payalawyer, too, justto be save and have explained toyouwhat the
various points actually mean.

The GPL license has grown with every revision and is quite far away from being
simple. The BSD license on the other hand has been cut down with every revision:
The 4-clause original BSD license included the requirement to mention the organ-
ization that the software originated with in advertisements. This was dropped for
the 3-clause Revised BSD license. The version preferred by FreeBSD - the 2-clause
Simplified BSD license - also dropped the prohibition of using the names of the or-
ganization and contributors e.g. to promote products derived from code under that
license.

FreeBSD being permissively licensed means that you can use the code and rest as-
sured thatthereare no complicated legaltanglesatall. Thelicense basicallymeans:
Honour the authors by keeping the copyright notice when you distribute in either
source or binary and claim full liability in case something doesn’t work as you ex-
pectit. Plain,simpleandtothe pointwhereyou canspendyourtimeondevelopment
rather than on law studies.

47.3. FreeBSD and the BSD Family as a Whole

FreeBSD is the biggest and most popular of the BSD projects. Being developed as a
general purpose OS (with a traditionally strong focus on servers however), it has the
broadest targetaudience, largest user base, highest count of applicationsavailable
foritand soon. Itis also the most visible of the BSDs both on the net and on confer-
ences and the best funded one, too.

But that doesn’t mean that it’s the best fit for each and every use case. There are
quiteafewpeoplewho haveadifferent favourite BSD and usually for good technical
reasons (not that “I like it best!” wasn’t a valid reason, too).

Therelationship betweenthevariousBSD projectsissomewhatdifferent fromthat
between common Linux distros. Since the BSD world is a lot smaller, all of the pro-
jects have their niche and certain areas where they excel. Therefore there is not so
much actual competition at all. On the contrary: BSD projects tend to share code
pretty often and it’s not uncommon that people are quite familiar with more than
oneOS.

2nd January 2021

Penguin’s Guide to Daemonland page149/157

Thereisdisagreementabout fundamental things of courseand since the BSD com-
munity is human beings there are always some folks with a somewhat sharp tongue
around. You will hear things like FreeBSD being “the Ubuntu of “BSD”, usually in a
disrespectful tone. Somebody else probably states something like “I really don’t see
the pointin NetBSD”. But all things taken into account, people usually behave very
decently.

In fact what may look like a hostile comment to the outsider mightactually be just
some humour that escapesyou. Keep in mind that many of the BSD developers know
each other even across the “borders” of the various projects. There’s for example a
conferencetalk givensometime agowhich goes by thetitle: “MyBSD sucks less than
yours”. An OpenBSD developer and a FreeBSD developer discuss the strong points
and weaknesses of their OS in a very entertaining way.

In general however there is this statement that a lot of people hold up: All BSDs
were created equal. I'm a very firm believer in that stance. There’s no single “best”
food, book, weather. No “one size fit's all” clothes and certainly no such operating
system, either. In theory it would be best if you tried out all of them and then made
an educated choice. In practise however there are always limiting factors like time,
enthusiasm, abilities. To narrow down the ones that might be of interest to you, I'll
givea little overview of the other BSDs next.

47.4. Close relatives: Other BSDs

While FreeBSD as an operating system is a good all-rounder, nobody isin doubt that
it's surpassed by other BSDs in certain areas that those focus and put their main at-
tention to.

47.4.1. OpenBSD

Ina2016 blog post for BSD newcomers | introduced OpenBSD like this:

“Ifyou choose OpenBSD, there’s a lot of really cooland modern features... that you
will have to do without! Oh, don’t get me wrong: That can be a great thing!”

I still think that for understanding OpenBSD it'simportant to really get right from
thestartthatitisaveryspecial OSthathappilygoesawayyouasanoutsiderwouldn’t

2nd January 2021

page150/157 Penguin’s Guide to Daemonland

expect (or mighteven beshocked about). Firstand foremost OpenBSD is about secur-
ity and correctness. Also it’s built to work for its developers, meeting their require-
ments. If it meets yours, too, you're invited to use it as you see fit. If it doesn't... Well,
too bad, use another one! OpenBSD developers won't add something to the system
just because you think it would be nice.

Sounds unusual? Itis. OpenBSD people live up to their principles and will not sac-
rificethemforapossiblyslightlylargeruserbase. Here'ssome examplesthatshould
convince you that my claims of these guys really meaning it are true:

* OpenBSD comes with HyperThreading support disabled by default
 The OSused tosupport loadable kernel modules - that feature is gone entirely

* The “year 2038 issue” (32-hit Unix time rollover) was solved as early as 2014 in
allsupported platforms

+ Theteam maintains their own fork of Xorg (named Xenocara)

* Foryearsand years the team has maintained Apache 1.3 because they did not
like the more restrictive license for 2.x. After a brief interlude with Nginx they
scrapped well-known web servers and wrote their own from scratch

As you can see, OpenBSD chooses to “play save” even when it hurts performance
(HyperThreading) or makes administrating the system less comfortable. And they
are not afraid to do things themselves if there’s nothing out there that meets their
expectations.

Onesuch expectation is that something can be made to adhere one of the import-
antprinciples of the project that goes: “Secure by default”. With other operating sys-
temsyou havetotunethemforsecurity-OpenBSDismeantto be fine by default. You
cannot forget to enable the firewall on a new installation like on FreeBSD or Linux.
Why? Because it's enabled in the default configuration! In contrast to FreeBSD, it
does not like to provide as many knobs as possible and won't let you do some unse-
cure things easily (e.g. running the hase system web server not chrooted is not sup-
ported).

OpenBSD takesaveryclearandstrict policy on licenses. While there issome GPL2-
licensed software in the OS, the license deemed barely acceptable but unavoidable
for the time being. GPL3 is rejected completely (of course you can install software

2nd January 2021

Penguin’s Guide to Daemonland page151/157

covered by that license from packages, though!). The preferred license is ISCwhich
is functionally equivalent to Simplified BSD but put differently. The team will not
acceptNDAsunderanycircumstance. Ifavendor chooses not to provide documenta-
tionwithoutsigning anNDA, OpenBSD choosesto notsupportthat hardware. Period.

Ingeneralit’s“Doitrightorsimplydon’tdoit”. Alot of effortis putinto code audit-
ing and improvement. Excellent documentation is considered crucial. To make the
audits easier to do, developers try hard to maintain a tidy system. They will rip out
code (removing unused functionality) as happily as developers of other projects add
new things. Theydonot oppose new features if they make the system more useful but
think about the implications first and usually draw a line, declaring what possible
featuresarein fact unwanted (because they’d add more complexity than good).

OpenBSD runs on a considerable number of architectures and the team deliber-
ately keepssomeold ones going, too. Thishas helped manytimesto catchedge-cases
early thatwould have resulted in unnoticed bugs if tested on x86 hardware only. For
thatreason the project builds the OS on real hardware even for the more exotic plat-
formsand does not go the easy route using emulators.

While the OpenBSD project is quite a bit smaller than FreeBSD, it has sparked an
impressive amount of technology. Tools like OpenSSH, sudo or tmux which are daily-
drivers for many of us have their roots in OpenBSD. OpenNTPD, OpenSMPD, relayd,
spamd and many more come from it as well. The same is true for the awesome Pf
firewall that has been ported to FreeBSD and NetBSD as well (but both ports have
diverged significantly and the actual upstream development is on OpenBSD).

A notable field where OpenBSD also really shines is exploit mitigations. The de-
velopersdon't buy theillusion of a bug-free system even though they try hard to get
as close to that ideal as possible. As a consequence they come up with new ways
to mitigate common (and ideally even future) exploit techniques. OpenBSD pion-
eered technology like system-wide stack protection, ASLR, WX (policy to disallow
memory being writeable and executable at the same time), KARL (randomized ker-
nelre-linkingduringstartup sothateachtimethesystembootsthe kerneladdresses
aredifferent)and soon.

Whileallof thismaysound somewhat “extremist” to many peopleit’ssimplyavery
commendable and appealing pure form of a no compromise stance to others. Only
you know if that’s for you or not.

2nd January 2021

page152/157 Penguin’s Guide to Daemonland

47.4.2. NetBSD
47.4.3. DragonFly BSD

47.5. Distant Relatives: Other Unix-likes

47.5.1. OpenSolaris / illumos
47.5.2. Minix
47.5.3. Linux

47.6. FreeBSD-derived Systems (general)

47.6.1. HardenedBSD
47.6.2. MidnightBSD
47.6.3. mfsBSD

47.7. FreeBSD-derived Systems (desktop-oriented)

47.7.1. GhostBSD
47.7.2. NomadBSD
47.7.3. helloSystem

47.7.4. (Some) Historic Derivatives
Desktop BSD

PC-BSD / TrueOS

Project Trident

FuryBSD

2nd January 2021

48. FreeBSD Culture and Community

48.1. An Overview of the FreeBSD Project

48.1.1. Architectures and Tiers
48.1.2. FreeBSD Branches and Support
48.1.3. System Components

48.1.4. The mascot: Beastie

48.2. Values of FreeBSD

48.2.1. Code of Conduct
48.2.2. Permissive Licenses

48.2.3. Cathedral, not Bazaar!

48.3. Project Structure

48.3.1. Governance

48.3.2. The Foundation’s Role

48.4. The Community

48.5. Known Deficiencies — where FreeBSD Comes up
Short

Afterword

Placeholder for afterword

Appendix

Literature

Placeholder for literature

List of Contributors

The following people (in alphabetic order) helped hammer this book into shape:

P.C. sent a mail with lots of small corrections for the history chapter and the first
halfofthefamily matterschapteralreadywrittenatthat pointintime. Healsomade
some suggestions that helped to make the book more useful.

F.F. mailed in with additional info for the family matters chapter and suggestions
regarding desktop FreeBSD.

Nathanael A. Hoyle pointed me at multiple spelling mistakes and made sugges-
tions regarding the structure of the history chapter.

0.K.kindly provided athorough correction of the history chapterincluding a lot of
helpfulhints. Special thanksto O.for patiently giving explanationswhen my English
failed me time and time again!

About the Author

Placeholder for author

	Legal
	Contents
	Chapter Overview
	Types of Readers / How to Read

	Preface
	About This Book
	Audience
	Why Even Bother?
	FreeBSD for Linux Users

	I FreeBSD Quickstart
	1 Popular Penguin Pitfalls!
	2 (Some) Important Differences to be Aware of
	3 Your FreeBSD Toy VM
	4 Administration Basics for the Impatient
	5 Identifying ``Linuxisms'' and Living Without them

	II Managing FreeBSD
	6 Installation
	7 Disk Partitioning and Filesystems
	8 System Boot & Service Management
	9 Users and Permissions
	10 Networking
	11 Updating the OS
	12 Timekeeping
	13 Package Management
	14 Logging
	15 Firewalling
	16 System Mail
	17 Foreign Filesystems & FUSE

	III (Slightly) Advanced Topics
	18 Breaking and Repairing the System
	19 Using ZFS
	20 Tuning FreeBSD
	21 Secure Levels
	22 Updating from Source
	23 Using Ports
	24 Jails
	25 Bhyve
	26 mfsBSD
	27 Linux Emulation

	IV FreeBSD by Example
	28 Rolling Customized Packages
	29 NFS Server
	30 ZFS Replication
	31 Simple Web Stack
	32 DNS Server with BIND
	33 VPN with OpenVPN
	34 Jailing Web, DB, BIND and OpenVPN
	35 Managing TLS Certificates with LE
	36 Mailserver with Postfix
	37 Doing Backups with Bareos
	38 Monitoring with NRPE & Icinga
	39 PXE Booting Multiple Operating Systems
	40 Configuration Management and Automation with SaltStack

	V FreeBSD Workstation & Laptop
	41 Graphical FreeBSD with X11
	42 Window Managers
	43 Desktop Environments
	44 Display Managers
	45 Making Your Desktop More Comfortable

	VI Background Information
	46 A (very) Brief History of Unix
	46.1 Mainframes and Multics
	46.2 Ancient Unix
	46.3 Law, Money – and Users
	46.4 Original BSD: The Berkeley Software Distribution
	46.5 Commercial Unix and Standardization Efforts
	46.6 The ``Unix Wars''
	46.7 BSD Outside UCB
	46.8 GNU, MINIX and Linux
	46.9 Open Source vs. Closed Source Unix-likes

	47 Open Source OS Family Matters
	47.1 What are UNIX, Unix, *nix and Unix-likes?
	47.2 Major Differences Between Linux and *BSD
	47.2.1 Complete OS vs. Distribution
	47.2.2 Updating
	47.2.3 Documentation and Manpages
	47.2.4 Licensing

	47.3 FreeBSD and the BSD Family as a Whole
	47.4 Close relatives: Other BSDs
	47.4.1 OpenBSD
	47.4.2 NetBSD
	47.4.3 DragonFly BSD

	47.5 Distant Relatives: Other Unix-likes
	47.5.1 OpenSolaris / illumos
	47.5.2 Minix
	47.5.3 Linux

	47.6 FreeBSD-derived Systems (general)
	47.6.1 HardenedBSD
	47.6.2 MidnightBSD
	47.6.3 mfsBSD

	47.7 FreeBSD-derived Systems (desktop-oriented)
	47.7.1 GhostBSD
	47.7.2 NomadBSD
	47.7.3 helloSystem
	47.7.4 (Some) Historic Derivatives

	48 FreeBSD Culture and Community
	48.1 An Overview of the FreeBSD Project
	48.1.1 Architectures and Tiers
	48.1.2 FreeBSD Branches and Support
	48.1.3 System Components
	48.1.4 The mascot: Beastie

	48.2 Values of FreeBSD
	48.2.1 Code of Conduct
	48.2.2 Permissive Licenses
	48.2.3 Cathedral, not Bazaar!

	48.3 Project Structure
	48.3.1 Governance
	48.3.2 The Foundation's Role

	48.4 The Community
	48.5 Known Deficiencies – where FreeBSD Comes up Short

	Afterword
	Appendix
	Literature
	List of Contributors
	About the Author

